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A versatile and efficient algorithm for the Monte Carlo simulation of king spin systems is 
described. A data structure is devised which allows the same program segment to be used for 
spin reversal trials for lattices of various types. The simulation of two and three-dimensional 
lattices is equally practical in terms of programming effort and computer time. At T/T, = 1.0 
the number of machine instructions executed per configuration change for the sq, SC, bee and 
fee lattices are approximately 125, 70, 75 and 90, respectively. 

1. INTRODUCTION 

The Monte Carlo method has been used extensively to study spin one-half 
systems with nearest neighbour interactions [ 1, 2, 3]. The Hamiltonian of the spin-4 
Ising model 14, 51 in a field H is, 

~P~=-J~sisj-mH~si, Cl> 
i,j i 

where the spin variables si take the values + 1 and the summation indices refer to sites 
on a d-dimensional lattice. The first summation is restricted to nearest ~eigbb~~r 
spins and the magnetic moment is denoted by m. 

The Monte Carlo method may be described as a computer experiment in which a 
sequence of configuration states is generated. Whi!e the system exists in one state a 
tentative transition to another state is selected by a random process which involves 
comparing a computer generated random number and a transition prob~b~l~ty~ The 
transition probabilities are chosen to make the distribution of states tend toward a 
Boltzmann distribution as the number of states of the sequence increases. The taking 
of ensemble averages of physically interesting quantities begins when it is judged that 
the influence of the starting distribution is negligible. The sequence is t~r~~~a~~~ 
when the desired precision is reached or the costs outweight the need for further 
precision. It has been shown [6, 71 that the avearages in the limit of infinitely long 
sequences converge to values representative of the true .distribution, provided the 
random process is capable of leading to all possible co~~gurations. 
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TABLE I 

Classification of Lattice Types 

Lattice type Dimensions 
Number of 

nearest neighbours 

Square 2 4 
Hexagonal 2 6 
Simple Cubic 3 6 
Body centred cubic 3 8 
Face centred cubic 3 12 

Usually a Monte Carlo algorithm is written for a particular lattice type such as 
one of the lattice types given in Table I. The number of nearest neighbours 
surrounding a lattice site is important as the identity of each nearest neighbour atom 
must be considered when determining the transition probability. A basic computer 
storage technique is to allocate one word of memory for each lattice site. The word is 
set to one or zero depending on whether an up spin or a down spin, respectively, 
occupies the corresponding lattice site. Owing to the finite size of the computer’s 
memory it is necessary to define a lattice boundary [3]. A convenient boundary is the 
periodic boundary where the lattice is surrunded on all sides with copies of itself. 

An important factor influencing the algorithm design is the physical difference 
between successive configurations in the sequence. In spin reversal models the next 
contiguration is generated by reversing a single spin, a model where the concentration 
of up spins (down spins) may vary. In spin exchange simulations a constant concen- 
tration of spins is maintained by exchanging unlike nearest neighbour spins. 

The errors which arise in Monte Carlo simulation are well investigated and 
include, finite lattice size [8-121, long relaxation times [ 13, 14 ] and finite time 
averaging [ 15, 161. Here a fast and versatile algorithm for Monte Carlo simulation of 
Ising models will be reported. The algorithm features a data structure which 
facilitates systematic program writing for a variety of applications and leads to 
improved execution efficiency. This research was undertaken to evaluate ensemble 
probabilities on the surface of certain bimetallic catalysts [ 171. 

2. THE STANDARD MONTE CARLO ALGORITHM 

In this section the standard Monte Carlo algorithm will be reviewed to establish 
terminology and identify certain sources of inefficiency. For the sake of simplicity the 
major part of the discussion will concern the Ising model square lattice with periodic 
boundary conditions and single spin reversal. The standard algorithm may be divided 
into three modules as set out below. 
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BEGIN:- 

(1) Generate and store the transition probabilities 
(2) Generate the sequence of configurations from the initial ~o~~guratio~ 
(3) Sample the current configuration 

END:- 

2.1. Module I 

The transition probabilities are calculated from the input parameters, such as 
temperature, magnetic field and coupling energy and stored in an array for fast 
referencing. It is convenient to derive expressions for the transition probabilities by 
relating group probabilities. The 12 groups of the two-dimensional square lattice are 
shown in Fig. 1 and are referred to as A or B depending on the spin of the central 
site. The probability of forming a group having a positive central spin and % positive 
nearest-neighbour spins is denoted as A, and the corresponding probability of having 
a negative spin surrounded by n positive spins is B,. Including the possible 
degeneracies of each of the spin groups there are 32 different configurations, however, 
symmetry arguments reduce the number of different group probabilities to 12, there 
being six A groups and six B groups. It is, however, possible to relate the A, and 
probabilities, Consider two spin systems, identical except that in one system 
particular site (having n nearest neighbour positive spins) has positive spin (system 
A), while for the other system the same site has negative spin (system B). The ratio of 
the probabilities of occurrence of these two systems is given by the ratio of their 
respective Boltzmann factors: 

B(system A) = exp[-(-J CNN sj - mH)/kT] 
p(system B) exp [-(-J CNN sj + mH)/kT] 

= exp([2mH- 8J/kT])[exp(4J/kT)jn 

= d”, (2) 

where 

rc = exp( [2mH - 8J]/kT), 

A = exp(4J/kT), 

FIG. 1. The 12 groups of the Ising square lattice. 



230 M. P. HARDING 

and 

c is the sum over the four nearest neighbours. 
NN 

As (2) is true for all states of the system we obtain 

A -.L= 
Bn 

d”. (5) 

Therefore from (5) the transition probabilities for the square lattice are given by, 

B, -+ A,, = ~1”/(1 + JCL”), (6) 

A, -+ B, = l/(1 + ~1”). (7) 

2.2. Module 2 

As shown below module 2 consists of an inner repeat until, where spin reversal 
trials are executed and an outer repeat until, where, in the event of a successful trial, 
the spin is reversed. 

BEGIN:- 

R EPEA T 
REPEAT spin reversal trials 
UNTIL spin I is to be reversed 
reverse spin I 
SEQCOUNT equals SEQCOUNT + 1 

UNTIL SEQCOUNT equals SEQLENGTH 

END:- 

A spin reversal trial involves choosing spin 1, 1 < 1 <N at random from the lattice 
of N spins. Spin I and its four nearest neighbours constitute a group for which a tran- 
sition probability is read referenced. A computer generated random number in the 
interval (0, 1) is subtracted from the transition probability. On a negative result a 
new spin reversal trial begins otherwise the spin is reversed and the spin reversal 
count is increased by one. When the required number of spin reversals have taken 
place the execution of module 2 is completed. 

The nearest neighbour address problem. To obtain a transition probability for 
spin I it is necessary to read reference memory at the four addresses corresponding to 
the nearest neighbours of spin I. To apppreciate the problem of determining the 
nearest neighbour addresses consider the square lattice of N = 16 sites as shown in 
Fig. 2. It is convenient to distinguish between the edge sites and the interior or bulk 
sites. 
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FIG. 2. The boundary sites of an N= 16 Ising square lattice. 

Let the bulk site routine reference the nearest neighbours P - 1, I+ 
I - S of bulk sites I, where I can be sites 6, 7, 10 and 11 and S = N”*. The nearest 
neighbours of lattice sites other than 6, 7, 10 and 1 I are not referenced by the bulk 
site routine. These boundary sites may be classified into either edge (Ej) or corner 
(Gi,i) sites. Using periodic boundary conditions, nine routines (see Table 11) are 
required to reference the nearest neighbours of every lattice site. 

The choice of which routine is appropriate for spin P must be made each time a 
spin reversal trial is executed. High level languages, such as ANSI FORT 
arrange the choices in a list and proceed stepwise through the list. This technique is 
efficient as long as the alternative is near the top of the list. For the square lattice the 
first item on the list can be the bulk site routine, because a site chosen at ~a~dorn 
from N = 40,000 sites has a probability of 0.98 of being a bulk site. U~fortu~ate~~ 

TABLE II 

Nearest Neighbours of Site I 

Routine Sites Nearest neighbours (S = A”/‘) 

Bulk 6, 7, 10, 11 

CM 1 

Ed 293 

Cl, 4 

E, 539 

c12 13 

E3 8, i2 

E, 14, 15 

I-l I+S ISi 

z+s-I, 1-t s, I+ 1, 

I- 1, I + s, I+ 1, 

I- 1, I+ s, I-s+1, 

z+s-I, I + s, I+ 1, 

1+s-1, I-(S- l)S, z+ 1, 

I- 1, I$& I-S-+-l. 

I- 1, z-(S- l)S, I- 1, 

I-S 

I+(s- 1)s 

I; (S- 1)s 

I+(.$- L)S 

z-s 

I-S 

I-S 

I-S 

c*, 16 I- 1, I-(S- I)S, I-s+1, I-S 
-_ 
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for other lattices the list of alternatives is much longer and the alternative decided 
upon has a greater probability of being further down the list. 

Some of the neighbour referencing problems can be avoided by choosing spin I 
sequentially from the N spins rather than at random. The neighbour referencing 
routines can then be programmed to keep pace with a counter moving through the 
lattice. Sequential site simulations, however, have the inherent disadvantage of less 
degrees of freedom when compared to random site simulations, and there is evidence 
that sequential site simulations have inefficiencies of their own in dealing with edge 
sites. In a sequential site simulation [lo] for the square lattice the free edge boundary 
condition algorithm was reported to be four times faster than the periodic boundary 
condition algorithm. 

At present there is a need to develop efftcient software for Monte Carlo simulation, 
particularly for the three-dimensional lattices where there are more nearest 
neighbours per site and proportionally more edge and corner sites than on the square 
lattice. 

2.3. Module 3 

The taking of ensemble averages is straight forward as one has an actual lattice of 
spins with which to work. Module 3 is mentioned because the data structure leads to 
a simple and efficient sampling technique for the group probabilities. 

2.4. High Cost Areas 

The high costs of Monte Carlo simulation arise from Module 2, that is generating 
the large number of configurations in the sequence. Therefore the average computing 
time, t, per configuration change will be used as a measure of efficiency of the 
simulation algorithm. t is given by, 

t=S.F+U, (8) 

where F is the average number of spin reversal trials per configuration change, S is 
the average execution time of a spin reversal trial and U is the average execution time 
of actually reversing spin I. 

For the standard Monte Carlo algorithm U < S and the major contribution to t is 
from continued execution of spin reversal trials. For the infinite square lattice with 
zero field, F may be evaluated by summing the product of the group probabilities 
[ 181 and the transition probabilities. At the critical temperature of the square lattice 
F = 6.9128 and at infinite temperature F = 2.0. In order to counteract the larger 
values of F encountered below the critical temperature the n-fold algorithm [ 191 was 
introduced. With this algorithm F effectively becomes unity and U and S are 
considerably increased. For the square lattice at T/T, = 0.558 the efftciency reported 
is 10 times that of the standard algorithm. The present approach is to accept the 
value of F and endeavour to reduce the execution time of a spin reversal trial. 
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3. MONTE CARLO SIMULATION USING A DATA STRUCTURE 

In this section an algorithm using a data structure designed for Monte Carlo 
simulation of Ising Models will be described. The algorithm has the same form as 
module 2 of the standard Monte Carlo algorithm, however, the data structure enables 
spin reversal trials to be executed without referencing the nearest neighbour addresses. 

For a lattice of N sites, the data structure consists of N nodes of one corn~~t~~ 
word per node, where node I contains information regarding spin I (site 1). Each 
node is divided into a “group field” and a “location field” whose contents are deafen 
as GROUP (1) and LOCATION (I), respectively. The node format for the s 
lattice is given in Fig. 3. The group field, to be discussed first, provides a linkage to 
the transition probability for spin 1, whereas the location field provides a linkage to a 
program module which reverses spin I. 

3.1 e Group Field-Spin Reversal Trial 

The identities of the spins occupying site I and the four nearest neighbour sites of 
site I are stored in the group field of note I. To illustrate the group field storage 
convention consider a group labelled “0” chosen at random from a square lattice as 
shown in Fig. 3. The group made up of the central site 0 and the four nearest 
neighbour sites labelled 1, 2, 3, and 4 is stored in the group field as the binary 
number 01011. The 0, 1, 2, 3 and 4 bits of the group field are set if and up span 
occupies the 0, 1, 2, 3 and 4 sites, respectively, of the group, and cleared if a down 
spin occupies the 0, 1, 2, 3 and 4 sites, respectively, of the group. The N = I.6 lattice 
given in Fig. 3 is rewritten in group field format and shown in Fig. 4. 

For a lattice stored as an array of nodes with base address L, GROUP (1) may be 
obtained with one reference to address L + I - 1. GROUP (1) can be used to directly 
address the transition probability for spin I if the precalculated probabilities are 
stored appropriately. GROUP (1) may be thought of as a binary number which may 
take one of 32 values, 0 octal < GROUP (I) < 31 octal. The transition prob 
calculated in program module 1, are stored in an array of 32 words with base 
P SO that P + GROUP (1) is the address of the transition probability for spin 

Updating 
routine 
for site I 

NODE I 
Transition 
probability 
for site I 

3 8 7 6 5/4 3 2 1 0 

(11 
A 

(41 IO1 (21 
B A 5 

131 
A 

FIG. 3. Data structure node format for the Ising square lattice. 
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1 0 13 

10101 1oo115 10110 00111 

2 14 
00010 010106 O1OOdO 00010 

ooloo3 
01101' 

11001 11 11000 15 

4 12 16 

11100 011118 10111 11001 

FIG. 4. The N = 16 Ising square lattice in group field format. 

this arrangement a spin reversal trial can be executed with only two memory 
references as outlined below. 

BEGIN:- 

REPEAT 

generate a random Index I 

read reference node I 

read reference the transition probability at 
address P + GROUP (1) 

generate a random number 

FLAG = trans. prob.-random number 

UNTIL FLAG is negative 

END:- 

3.2. Location Field-Spin Reversal 

In order to reverse spin I and keep the data structure up to date it is necessary to 
update the group fields of five nodes, that is node I and the four nearest neighbour 
nodes. This task will be performed by a program segment referred to as an updating 
routine. The updating routine must contain instructions to read reference the nearest 
neighbour nodes before the group fields can be updated. It follows from Table II that 
nine updating routines are sufficient. The choice of which updating routine is suitable 
for spin I is facilitated by storing the classification of site 1, i.e., bulk, edge (EJ or 
corner (C,) in the location field of node I. In particular the location field of node I 
contains the starting address of the updating routine for spin I. The program branch 
can then be completed by executing a machine instruction which allows a parameter, 
in this case the location field, to specify a program branch destination address. This 
branching technique facilitates efficient simulation of more complex lattices where 
there are considerably more than nine updating routines. 
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3.3. The Updating Routine 
Updating a node amounts to complementing one of the group field bits. To reverse 

a spin on site I, where site I is a bulk site the following bits must be compleme~te~~ 

zero bit of GROUP (1) 

one bit of GROUP (I $ 1) 

two bit of GROUP (I- S) 

three bit of GROUP (I- 1) 

four bit of GROUP (1 + S) 

With the information provided in Table II it is straightforward to write the list of 
operations required to reverse a spin on any lattice site. The operations may be 
executed systematically by using an exclusive OR (logical difference) instruction and 
an updating operand. For example, if the spin on site 7 of Fig. 3 is to be reversed 
then the group fields of nodes 7, 8, 3, 6 and 11 may be updated as shown below, 

01101 01101 7 7 
00001 00001 XOR - updating XOR - updating operand operand 
0 1100 0 1100 7 updated 7 updated 
01111 01111 8 8 00100 00100 3 3 
00010 XOR 00100 XOR 
01 IO1 8 updated 00000 3 updated 
01010 6 11001 11 
01000 XOR 1 QOOO XOR 
000 10 6 updated 03001 1 I updated 

The updating operand is left shifted one bit position as the algorithm updates nodes 7, 
8, 3, 6 and 11 in turn. The exclusive OR instruction is used as it is not then ne~e§sar:y 
to determine the status of the bit to be complemented. 

Updating routines within any lattice type are identical except for the i~st~~~~i~ns 
which read reference the nearest neighbour sites. This similarity allows each ~~dati~~ 
routine to be duplicated from the previous one, which is particularly important for the 
face centred cubic lattice which has 32 updating routines, each with a~proxima~~~y 50 
instructions. 

The decision whether or not to halt the simulation involves executing ~~str~ct~ons 
to increment SEQCOUNT and a program branch depending on the o~tcorn~ of a 
comparison between SEQCOUNT and SEQLENGTH. To economise on execution 
time those instructions are not executed after every cQn~g~ration change. The 
preferred technique is to count only those configuration changes which take place on 
a particular set of edge sites. By counting, for example, only E, co~~~uratio~ e~a~~~~ 
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the instructions are executed only a few times and have a negligible effect on the 
overall computer time. 

3.4. The Initial Configuration 

The spin reversal module may also be used to set up the initial configuration. For 
each node the location field is assigned to its respective value and the group field is 
set to zero, giving a lattice of down spins. To place an up spin on the lattice on site 1, 
the spin reversal module is set up as a subroutine and called with node 1 as an 
argument. 

3.5. Varying and Fixed Concentration Mode 
The data structure algorithm can also be easily modified to simulate in fixed 

concentration mode. The technique used is to alternate A,, < B, and B, +A, 
configuration changes. To achieve this two data structure algorithms are placed in 
series. The first algorithm executes spin reversal trials only on sites occupied by a 
down spin. The second algorithm executes spin reversal trials only on sites occupied 
by an up spin. This technique requires that extra instructions be inserted to isolate 
and test the lowest order bit of the group field. 

3.6. Sampling the ConJguration 
The lattice of nodes can be sampled to obtain the group probabilities. By definition 

GROUP (I) is an image of a group expressed as a binary number. Therefore using 
GROUP (I) as an index the frequency of occurrence of a group can be counted 
directly into an array, say C, by incrementing C (GROUP (1)). The advantages of 
the data structure here is that the group probabilities may be obtained for the entire 
lattice with only one memory reference per node. 

3.1. Algorithm Preparation 
Program segments for the square lattice spin reversed trial and bulk site updating 

routine were written first. These segments written in COMPASS for a Control Data 
Cyber 7600 [20] computer are given in Appendix A. The remaining eight updating 
routines for the square lattice were duplicated from the bulk site updating routine 
with appropriate address changes as designated in Table II. 

3.8. Data Structure Algorithms for Other Lattices 
The structure of each algorithm is identical to the square lattice algorithm, 

however, the amount of information stored in each node and the number and size of 
the updating routines varies from lattice to lattice. In Table III data structure details 
of the hcp, SC, bee and jicc lattices are compared with details of the square lattice. Spin 
reversal trials for each lattice are made up of the same machine instructions executed 
in the same order. The values of operands such as the number of sites, masks and 
shift counts are sufficient to account for the differences between lattices. 

The square lattice updating routine establishes a pattern of flow of nodes into the 
arithmetic registers and back into memory, which keeps pace with the shifting of the 
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TABLE III 

Data Structure Details for Various Lattice Types 

Lattice type 
Number of Group field 

updating routines (bits) 

w 9 5 
hcp 12 7 
SC 21 I 
bee 16 9 

fee 32 13 

updating operand. With this systematic approach it is straight forward to extend the 
updating routine to update the larger number of nearest neighbour nodes found in the 
more complex lattices. The task of writing data structure algorithms for other lattices 
reduces mainly to determining the nearest neighbour addresses of site I. 

4. RESULTS AND DISXJSSION 

Data structure algorithms were prepared in fixed and varying concentration mode 
for the sq, hcp, SC, bee andfcc lattices. Preparation of code, amounting to 35 machine 
instructions, for the square lattice spin reversal trial and bulk site updating routine, 
accounted for the major programming effort. With these segments complete 
algorithms were prepared for each lattice with the aid of an editing language. 

The results reported in this section unless otherwise stated are for single spin 
reversal simulations, (varying X, mode) with periodic boundary conditions and 
random site selections. The lattices sizes are N = 40,000 for the sq and hcp, 
N = 39,304 for SC and bee and N = 32,000 for the fee lattice. Prior to measuring 
execution times random and ordered initial configurations were allowed to relax until 
the values of F, from (8), for configurations from each sequence were 
indistinguishable from each other. 

Recalling the nomenclature of (8) execution time details for the sq, hcp, bee and&c 
lattices are compared in Table IV. The results show that the average execution time 
of a spin reversal trial, S, is 1.15 ,usec and this time is unaffected by lattice type. The 
average execution time of reversing spin I, U, increases approximately linearly with 
the number of nearest neighbours, from 0.96 ,usec, for four nearest neighbours an the 
sq lattice, to 2.69 psec, for 12 nearest neighbours on thefic lattice. U is u~~ected by 
the number of updating routines as the correct updating routine is chosen by using 
the computed branch point destination instruction. Simulating in fixed X, mode for 
XA = 0.5, the value of S increases by approximately 50%, and U is unaffected. 

The average execution times, t, per configuration change measured in zero fiel 
T/T, = co and T/T, = 1 are given in Table V. The results provide a measure of the 
effects of the lattice type on the efficiency of the data structure algorithm. It is evident 
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TABLE IV 

Values of S and U for Data Structure Algorithm 

Lattice type S(usec) UC,usec) 
-- 

Ep 1.15 1.15 0.96 1.6 
SC 1.15 1.4 
bee 1.15 1.9 

fCC 1.15 2.1 

from these results that the algorithms for the two and three dimensional lattices are of 
comparable efficiency. It is surprising to find, however, that at T/T, = 1.0 the SC, bee 
and fee lattice algorithms are more efficient than the square lattice algorithm. The 
increase in efficiency is due to a decrease in the number of spin reversal trials per 
configuration change, as indicated by the values of F, from Table V, measured at 
T/T, = 1.0. 

Any absolute comparison of algorithm efficiency is limited as other workers may 
use different simulation models and computers and execution times are seldom 
reported. Some execution times, however, are given in Table VI for square lattice 
algorithms with single spin reversal. The n-fold algorithm was executed on a 
CDC 6600 series computer and featured random site selections and periodic 
boundary conditions. Landau’s algorithm was executed on an IBM 370/168 computer 
and featured free edge boundary conditions and sequential site selections. The data 
for Landau’s algorithm was calculated from (8) using S = 35 bsec and U = 0 whereas 
the n-fold data are quoted directly. 

The present algorithm when compared to the n-fold algorithm, at T/T, = 1.0, is 
approximately 45 times more efficient for 2H/kT = 0 and 40 times more efficient for 
2H/kT = 0.1763. At T/T, = 0.588, 2H/kT = 0 the advantage in efficiency is reduced 
to a factor of approximately 8. When compared with Landau’s algorithm the present 
algorithm is approximately 20 and 25 times more efficient at T/T, = co and 

TABLE V 

Effect of Lattice,Type of Algorithm Efficiency 

Lapice type 
t pet t ysec 

(T/T, = 00) (T/T, =‘I) (T/T;= 1) 

sq 3.3 8.7 6.9124 
hcp 3.9 T, is unknown - 
SC 3.1 4.8 2.99 
bee 4.2 5.0 2.12 
fee 5.2, 6.1 2.63 
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TABLE VI 

Comparison of Algorithm Effkiency (time psec) 

- 
TIT, = co 
N-O 

Present 
-__--___- 

3.3 

n-fold 

- 

Landau [ 10 j 

70 

T/T, = 1.0 
If=0 8.1 410 240 

T/T, = 1.0 
2H/kT= 0.1763 24 1000 - 

T/T, = 0.588 
w=o 55 400 - 

T/T, = 1 .O: respectively. If Landau’s algorithm contained periodic bo~~da~ 
conditions and random site selections its efficiency would be reduced [lOI. 

Unlike the present algorithm the efficiency of other algorithms will be affected 
lattice type. If any data could be found for the hcp, SC, bee and fee lattices then an 
efficiency comparison would be even more in favour of the present a~gor~tbm, For 
further comparions it is worthwhile reporting that, at T/Tc = 1.0, using the data 
structure algorithm for SC, bee andfcc lattices, approximately 70, 75 and 90 machine 
instructions respectively, are executed per configuration change. At these 
temperatures the number of machine instructions executed per con~guratiQ~ change is 
quite small, and any further significant decreases seem unlikely. 

The data structure algorithm has been demonstrated to be an efficient and versatile 
tool for the Monte Carlo simulation of Ising models. The algorithm has the 
advantage of having one program segment which can be used for spin reversal trials 
for various lattice types and boundary conditions. The simulation of two and three 
dimensional lattices are now equally practical in terms of both computer time and 
programming effort. 

APPENDIX A 

In this appendix a sample algorithm for module 2, written in C8M 
CDC 1600 computer is described. The algorithm is for a square lattice 
boundary conditions, random site selections and single spin reversal. The algorithm 
contains an operand initialisation segment, a spin reversal trial segment and a bulk 
site updating routine. 

The random numbers are generated by a multiplication method requiring two 
operands, a constant multiplier and a current random rmmber. normally on the I 
computer a double precision floating multiplication requires both FX and 
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multiplication instructions, to retrieve the full 96 bit coefficient and 24 exponent 
result. If the DX instruction alone is used, the lower 48 bits of the 96 bit result and 
the larger exponent of the two operands, minus 60 octal, is returned to the designated 
X register, The period of the random number is 24s if the constant multiplier is 2000 
1207 2642 7173 0565 octal. The current random number is always between 0 and 1, 
having an exponent of 2000-60 octal = 1717 octal. 

The code is specifically for the CDC 7600 compter. However, some features of the 
algorithm may be implemented on other machines. The current random number, the 
random number constant multiplier and the number of lattice sites are three operands 
given special priority. During operand initialization these operands are permanently 
stored in the arithmetic registers for the duration of execution of module 2. Execution 
time and program instructions are saved as these operands are not read-referenced 
after every spin reversal trial or after every spin reversal. Other operands are either 
stored in the indexing (B) registers or generated at execution time. 

* Operand Initilisation 

SA5 RANDOM 
BX7 x5 
SAl RANDOM + 1 
SA2 N 
SA5 SEQLENGTH 
SB7 x5 
SBI 1 
SB7 6 
SB6 0 

* Spin Reversal Trial 

SPINTRIAL BSS 
DX7 Xl *x7 
FXO x2 *x4 
DXI x4 *x1 
ux3 B4, X0 
LX6 B4, X3 
SA5 X6sL 
SB4 A5 
MX4 54 
BX4 -x4 *x5 
SA3 X4SP 
AX4 B2, X5 
sxo B1 
FX6 x3-x7 
SB5 x4 

fetch the current random number 
transmit the random number to X7 
fetch the random number multiplier 
fetch the number of lattice sites 
fetch the halt flag 
transmit SEQLENGTH to B7 
shift operand 
location field shift operand 
initialise SEQCOUNT 

OB 
generate the first RN 
multiply by N 
generate the second RN 
unpack the product 
left shift to form Index Z 
fetch node I 
save the address of node I 
prepare a mask 

NG 
JP 

mask the location field 
fetch the transition probability 
right shift the location field 
generate the updating operand 
transition prob. -RN 
transmit the location field 

X6, SPINTRIAL on a negative result branch to SPINTRIAL 
“LOC + B5 branch to updating routine 
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* Bulk Site Updating Routine 

SA3 
SA4 
BX6 
LX0 
SA5 
SA6 
BX6 
LX0 
SA6 
SA3 
BX4 
LX0 
SA6 
BX6 
LX0 
SA6 
BX6 
SA4 
ai! 

B4 + 1 
B4-S 
x0-x5 
X0, Bl 
B4-1 
B4 
x0-x3 
XO,Bl 
A3 
B4+S 
x0-x4 
X0, Bl 
A4 
x0-x5 
X0, Bl 
A5 
x0-x3 
A3 
SPINTRIAL 

fetch node 1+ 1 
fetch node 1 - S 
update node I 
left shift the updating operand 
fetch node I- 1 
store node I 
update node 1+ 1 

store node I + 1 
fetch node I + S 
update node I - S 

store node I + S 
update node I - 1 

store node I - 1 
update node I + S 
store node I + S 
branch to SPINTRIAL 

ACKNOWLEDGMENTS 

I am indebted to the late Dr. A. M. W. Verhagen for valuable guidance in the development of the 
mathematical aspect of this work. 

REFERENCES 

1. L. D. FOSDICK, Phys. Rev. 116 (1959), 565. 
2. J. R. EHRMAN, I,. D. FOSDICK, AND D. C. HANDSCOMB, J: Math. Phys. 1 (1960), 547. 
3. K. BINDER, In “Topics in Current Physics,” Vol. 7, “Monte Carlo Methods in Statistical Physics” 

(K. Binder, Ed.), Springer-Verlag Berlin, Heidelberg, 1979. , 
4. W. Z. LENZ, Physik. 21 (1920), 613. 
5. E. ISING, Z. Physik 31 (1925), 253. 
6. Yu. A. SHREIDER, “The Monte Carlo Method,” Oxford Univ. Press, London/New York, 1966. 
7. J. M. HAM~~ERSLEY AND D. C. HANDSCOMB, “Monte Carlo Methods,” Methuen, London, 1964. 
8. A. E. FERDINAND AND M. E. FISHER, Phys. Rev. 185 (1969), 832. 
9. K. BINDER, Physica 62 (1972), 508. 

10. D. P. LANDAU, Phys. Rev. B 13 (1976), 2997. 
Il. D. P. LANDAU, Phys. Rev. B 14 (1976), 255. 
12. K. BINDER, Phys. Stat. Sol. B 46 (1971), 561. 
13. E. STOLL, K. BINDER AND T. SCHNEIDER, Phys. Rev. B 8 (1973), 3266. 
!4. M. SUZUKI, Prog. Theor. Phys. 43(1970), 43. 
15. W. W. WOOD, “Physics of Simple Liquids,” Chap. 5, Wiley, New York, 1968. 
16. R. FRIEDBERG AND J. E. CAMERON, J. Chem. Phys. 52 (1970), 6049. 

m/44/2-2 



242 M. P. HARDING 

17. J. R. ANDERSON, K. FOGER, AND R. J. BREAKSPERE, J. Catal. 51 (1979), 458. 
18. M. P. HARDING AND P. J. BUNYAN, J. Phys. A 13 (1980), 3243. 
19. A. B. BORTZ, M. H. KALOS, AND J. L. LEBOWITZ, J. Comg. Phys. 17 (1975), 10. 
20. Control Data 7600 Series Cyber 7O/Model 76, “Hardware Reference Manual” Publication 

60367200. 


